0
Корзина пуста

Наши материалы – Ваш успех!

Методы обработки листового ПолиЭтиленТерефталат-Гликоля (ПЭТГ)

По своим физико-механическим и эксплуатационным характеристикам листы ПЭТГ практически не уступают поликарбонату, а по стоимости значительно дешевле, что немаловажно для российских производителей рекламной продукции. К тому же листовой ПЭТГ из-за низкой температуры перехода в термопластичное состояние легко и с малыми энергетическими затратами подвергается различным процессам термо- пневмо- и вакуумформования.
Для производителей рекламной продукции, дизайнеров, сайнмейкеров, технологов и других технических исполнителей, непосредственно работающих с листовым ПЭТГ, очень важными являются сведения о способах обработки и методах различных воздействий на материал, таких как формование холодным и горячим сгибанием, склеивание, резка (механическая и лазерная), сверление, фрезерование, штамповка. Этим практическим аспектам воздействия на листовой ПЭТГ и посвящена данная статья.
На европейском и российском рынке листовых материалов в последнее время большим спросом и популярностью пользуются листовые ПЭТГ марки «VECTAN UVP (Ultra-Violet Protected)» («ВЕКТАН УФ-защищенный»). На примере этого материала указанные в статье эксплуатационные характеристики и способы обработки распространяются также на листы ПЭТГ марки «VIVAK» («Axxis», Бельгия) и «SIMOLUX» («Simona», Германия).
Листы ПЭТГ (плотность 1.27 г/см3) имеют высокое светопропускание (прозрачные – 90%), могут быть матовыми (35%) и цветными (тонированными). Они имеют глянцевую УФ-защищенную поверхность с обеих сторон, покрытых защитной полиэтиленовой пленкой. Поверхностный слой имеет высокую устойчивость к царапинам, на него прекрасно наносятся аппликативные самоклеящиеся пленки всех типов и хорошо ложится печать офсетным и трафаретным способами. Защита от ультрафиолетового излучения нанесена с обеих сторон листа, что гарантирует сохранение светотехнических (без пожелтения) и эксплуатационных характеристик материала в течение 10 лет. Складировать листы следует в сухом месте. ПЭТГ абсолютно безопасен при контакте с окружающей средой, включая использующих его людей, физиологически инертен и пожаробезопасен, то есть относится к группе трудновоспламеняемых материалов, не поддерживающих горение на воздухе. При нагревании материал проходит следующие стадии по мере повышения температуры:
- Температурный рабочий диапазон -40°С...+70°С
- Температура начала термопластического размягчения 70°С
- Температура начала деструкции (разложения) > 280°С
- Температура воспламенения >400°С
Основные физико-механические и эксплуатационные характеристики листового ПЭТГ указаны в таблице 1.
Таблица 1.
Технические характеристики листового ПЭТГ.

характеристикаметодединицавеличина
плотностьd-1505г/см31.27
водопоглощение за 24 ч.din53495%<0.1
предел прочности при разрывеdin53455мпа50
удлинение при разрывеdin53455%55
предел прочности при изгибеdin53452мпа70
ударная вязкость (charpy) без надрезаdin53453кдж/м2без разрушения
ударная вязкость (charpy) с надрезомiso180кдж/м210
ударная вязкость (izod) с надрезомiso180дж/м115
коэфф. линейного расширенияdin53752к-1, 10-56.8
теплостойкость (vicat)din53460°c82
теплопроводностьdin52612вт/м·к0.20
коэффициент теплопередачивт/м2·с5.56 (2мм)
5.13 (5мм)
удельная теплоемкостьd-2766дж/г·к1.1
макс. температура использования°с70
температура термоформования°с120 - 160
твердость (rockwell)d-785r105
светопропусканиеdin5036%88 - 90
электрическая прочностьd149кв/мм16
объемное сопротивлениеd257ом·см1015
поверхностное сопротивлениеd257ом1016


Теплоизоляция
Приведенные в таблице данные по теплопроводности и, соответственно, коэффициенту теплопередачи (К) указывают на высокие теплоизоляционные свойства листов ПЕТГ. При использовании этих листов вместо обычного силикатного стекла для остекления различных бытовых и промышленных сооружений наблюдаются следующие соотношения. При одинарном остеклении одинаковый эффект по теплопередачи (К = 5.56 Вт/м2·С) наблюдается при использовании стекла толщиной 10 мм и листового ПЭТГ толщиной всего лишь 2 мм. При этом наблюдается десятикратный выигрыш в весе (25.0 кг/м2 и 2.54 кг/м2) и антивандальный вариант в противоударном отношении. При двойном остеклении одинаковая теплоизоляция (К=3.05 Вт/м2·С) достигается при использовании 2-х стекол по 5 мм толщиной с воздушной прослойкой между ними 15 мм (25.0 кг/м2) или 2-х листов ПЭТГ толщиной 3 мм на расстоянии 10 мм (7.6 кг/м2).
Механическая обработка
Механическая обработка листов ПЭТГ может проводиться с использованием различных инструментов, используемых при обработке дерева или металла. При этом окружные и линейные скорости вращения или продвижения инструмента должны быть такими, чтобы не вызывать нагрев материала до его плавления. Оптимальные высокие скорости обработки не должны вызывать перегрева как материала, так и инструмента. Следует использовать всегда хорошо наточенные твердосплавные, износостойкие инструменты изготовленные из "высокоскоростных" и "карбонизированных" сталей. Так как листовой ПЭТГ обладает низкой теплопроводностью, необходимо обеспечить отвод тепла от места обработки через инструмент или посредством местного охлаждения струей сжатого воздуха.
Ручная обработка листов ПЭТГ предполагает использование различных инструментов для работы с деревом или мягкими металлами – рубанки, напильники, наждачная бумага и др. Винты и гайки (после резьбования с помощью плашек и метчиков), шурупы, саморезы, и другие приспособления для механического скрепления отдельных частей можно использовать в одном месте не более 2-х раз из-за относительной "мягкости" материала.
Фрезерование производится высокоскоростными фрезами для металла при 500 об/мин и скоростью подачи 0.25 мм/об.
Сверление производится стандартными двухперьевыми сверлами для дерева или металла с углом острия 60 - 90° и углом резания 12 - 18°. Скорость вращения внешней кромки сверла должна быть в пределах 30 - 61 м/мин, а скорость подачи 0.25 - 0.63 мм/об. При сверлении глубоких отверстий необходимо охлаждать сжатым воздухом и как можно чаще извлекать сверло для предотвращения перегрева материала. Расстояние сверления от края листа должно быть не менее 1.5 диаметров отверстия.
Распиловка может производиться как ленточными, так и циркулярными пилами для дерева или металла. Однако некоторые конструктивные особенности характерны для пил, используемых для чистой и быстрой распиловки ПЭТГ. Косозубые пилы наиболее предпочтительны, так как они обеспечивают легкое и быстрое удаление образующихся опилок из рабочей зоны, что предохраняет материал от перегрева. При прямой резке лучше использовать циркулярные пилы. Для получения изогнутых и фигурных резок следует применять ленточные пилы (электролобзики). Для обеспечения чистой кромки и отсутствия сколов при распиловке расстояние между зубьями пилы должны уменьшаться с уменьшением толщины листового материала ПЭТГ. В таблице показаны основные конструктивные и технологические особенности ленточных и циркулярных пил для распиловки листового ПЭТГ.

Таблица 2.

показательленточная пилациркулярная пила
расстояние между зубьями t1 - 3 мм8 - 12 мм
угол α30 - 40°15°
угол Y15°10°
угол ß-15°
скорость режущей кромки1200 - 1700 м/мин2500 - 4000 м/мин
скорость подачи материала-3 - 6 м/мин


Резка, штамповка, фигурная вырубка листового ПЭТГ производится только при толщине листов меньше 2.5 мм. Для уменьшения возникновения сколов и трещин рекомендуется предварительно нагреть материал до 38-40°С. Давление, необходимое для резки и штамповки листового ПЭТГ, рассчитывается по формуле: Р(тонн) = А·В·С/8896, где А – прочность на раздир (МПа), В – толщина листа (мм), С – периметр штамповки (мм), соотношение величин А и В следующее: толщине листов (В) – 2, 3 и 6 мм соответствует прочность на раздир (А) – 57.6, 56.5 и 46.1 МПа.
Строгание производят обычно после распиловки для получения чистой, ровной кромки листа. При строгании используют барабан диаметром 4-6 мм с двумя режущими ножами со скоростью вращения до 24000 об/мин и скоростью подачи материала до 1.5 м/мин.
Лазерная резка листового ПЭТГ рекомендуется при толщине материала до 4.7 мм. В этом случае полученный срез чистый и прозрачный. Лучше всего использовать Excimer-лазер, так как при использовании углекислотного лазера листовой ПЭТГ в силу своего химического строения поглощает значительную часть энергии лазерного луча. Так, например, при лазерной резке листа ПЭТГ толщиной 2 мм без видимого эффекта поглощается 45% энергии лазера, что влечет за собой дополнительные затраты на электроэнергию и делает процесс энергетически невыгодным.
Формование
Холодное сгибание листов ПЭТГ без возникновения значительных внутренних напряжений при малых радиусах изгиба допускается для толщин меньше 2.5 мм. "Безопасным" минимальным радиусом изгиба является величина 150 толщин листа.
Сгибание при нагреве осуществляется с предварительным разогревом обеих сторон листа по линии сгиба до оптимальной температуры 105 - 110°С, причем внутреннюю сторону будущего угла нагревают в первую очередь, а затем – внешнюю сторону. Ширина нагреваемой зоны X (мм) рассчитывается по формуле Х = 0.026·В·Y, где В – толщина листа (мм), Y – угол изгиба (в градусах). Так, например, для толщины листа 3 мм и угле изгиба 90° ширина прогреваемой зоны должна быть не менее 7 мм. При малых углах изгиба до 45° и толщинах до 3 мм достаточно нагревать материал с одной внутренней стороны в течение не более 2 минут.
Термоформование листового ПЭТГ проводится в интервале температур самого материала 120 - 160°С. Для получения изделий сложных форм температура должна быть не меньше 150°С. Листовой ПЭТГ является одним из наиболее пригодных для термоформования полимерных материалов. Благодаря своим высоким механическим показателям и прекрасной эластичности в нагретом состоянии этот материал может подвергаться самым различным методам термоформования. Наиболее часто используется негативное вакуумформование в форму, когда необходимо получить изделие с тонким днищем и толстыми стенками, и позитивное вакуумформование над формой для изделий с толстым днищем и тонкими стенками. Минимальный вакуум при этом должен быть 500 мм ртутного столба (0.66 атм = 0.067 МПа) и желательно использовать сандвичевую систему нагрева материала с двух сторон с помощью инфракрасных излучателей. Готовое изделие извлекается из формы после медленного охлаждения до 70°С. При пневмоформовании воздухом под давлением в форму параметры процессов нагрева, охлаждения материала и самого формования аналогичны процессу вакуумформования. При свободном формованиии выдуванием на рамке необходимой формы (квадрат, треугольник, круг, эллипс и др.) давление сжатого воздуха рекомендуется не менее 2.76 МПа. В процессе формования при помощи матрицы и пуансона требуется учитывать разницу в теплопроводности, и соответственно, температуре материала и инструмента. Для изготовления инструмента формования (матрицы и пуансона) используются различные материалы (в скобках указаны значения теплопроводности, Вт/м·К) – гипс (3.2), дерево (1.7), эпоксидная смола (2.4), эпоксидированный алюминий (9.7 - 16.2), алюминий (2422), полированная сталь (485). Температура инструмента в процессе формования должна быть в пределах 50 - 55°С. В инструменте необходимо сделать несколько отверстий диаметром 0.05 - 0.08 мм для выхода воздуха, находящегося между материалом и поверхностью формы. Во всех случаях термоформования листов ПЭТГ следует обращать внимание на необходимость медленного охлаждения готового изделия. При быстром охлаждении в материале могут возникнуть внутреннние напряжения, что сказывается на прочности и внешнем виде изделия. При необходимости изделия можно "отпустить" термостатированием в течение 1 - 2 часов при температуре 75 - 80°С.
Склеивание
Методы склеивания листов ПЭТГ аналогичны известным методам при работе с таким распространенным материалом как полиметилметакрилат (оргстекло). В качестве растворителей используют метиленхлорид, дихлорэтан, хлороформ, ацетон, циклогексан, тетрагидрофуран, трихлорэтилен, метилэтилкетон и их смеси. Для ПЭТГ оптимальными клеящими сотавами являются смеси 42% метилэтилкетона, 42% трихлорэтилена и 16% метиленхлорида или 85% метиленхлорида, 12% трихлорэтилена и 3% метилэтилкетона. Высокая прочность клеевого соединения достигается при использовании 10%-ного раствора стружки или опилок самого ПЭТГ в указанных растворителях. Следует учитывать, что в этом случае процесс склеивания более длительный из-за медленного испарения растворителя.
Хороший результат дают суперклеи на цианакрилатной и полиуретановой основе.
Для соединения листов ПЭТГ может быть использована ультразвуковая сварка и сварка на основе трения (кручения).
Полирование листов ПЭТГ производится с использованием стандартных полировочных паст и вакс и кругов из материи или шерсти. Также возможно полирование с помощью пропан-бутанового пламени и обработкой поверхности парами нагретых растворителей, в частности метилэтилкетона или дихлорметилена.
Чистка листов ПЭТГ производится мягкой ветошью или губкой теплой водой с добавлением не щелочных поверхностно-активных моющих средств. Автор: Александр Гальченко

ПЭТ - ПОЛИЭТИЛЕНТЕРЕФТАЛАТ - ударопрочный антивандальный листовой материал

На российском рынке листовых материалов, используемых в производстве рекламной продукции, торгового и медицинского оборудования, в строительстве, в автомобилестроении и многих других областях, сравнительно недавно появился новый материал – ПОЛИЭТИЛЕНТЕРЕФТАЛАТ (ПЭТ, англ. PET) и его модификация – ПОЛИЭТИЛЕНТЕРЕФТАЛАТ-ГЛИКОЛЬ (ПЭТ-Г, англ. PET-G). В России этот материал часто называется ПОЛИЭФИР или ЛАВСАН.
Полиэтилентерефталат представляет собой продукт сополиконденсации диметилового эфира терефталевой кислоты и этиленгликоля. Условно можно представить строение молекул ПЭТ как чередование ароматических фрагментов (как в поликарбонате) и линейных алифатических фрагментов (как в полиэтилене). Такое строение ПЭТ определяет его специфические свойства, такие как высокую механическую прочность и ударостойкость в сочетании с великолепной пластичностью в холодном и, особенно, в нагретом состоянии. В строении молекул полиэтилентерефталат-гликоля (ПЭТ-Г) еще больше алифатических фрагментов (в процессе сополиконденсации присутствует 1,4-циклогександиметанол) и поэтому при сохранении высоких механических показателей этот материал в нагретом состоянии еще более пластичен и легче подвергается термообработке, например в производстве различных изделий методами термо-, вакуум- и пневмоформования.
К тому же, пониженное значение величины теплоемкости листов ПЭТ (1.1 Дж/г·К) по сравнению с полистиролом (на 64%), оргстеклом (на 34%) и поликарбонатом (на 7%) приводит к тому, что для нагрева листов ПЭТ до температуры формования требуется, соответственно, значительно меньше тепловой энергии и времен. Кроме того, температурный диапазон процессов термоформования составляет 120-160°С, что значительно ниже температур термовакуумформования в случае поликарбоната. Все это приводит к экономии электроэнергии и трудовременных затрат и, следовательно, к снижению себестоимости изготавливаемой продукции. К тому же, листы ПЭТ имеют незначительные внутренние напряжения, что делает процесс термоформования простым и высокотехнологичным, а качество конечных изделий из листов ПЭТ отвечается всем высоким требованиям, предъявляемым к рекламной и светотехнической продукции по прочности, дизайну, внешнему виду. Повышенная стойкость изделий из ПЭТ к внешним воздействиям, в частности, к УФ-излучению и погодным условиям позволяет эксплуатировать различную рекламную и светотехническую продукцию на открытом воздухе в течение длительного времени (до 10 лет) без заметного изменения всех необходимых высоких прочностных и светотехнических характеристик.
По внешнему виду и по светопропусканию (90%) листы ПЭТ аналогичны прозрачному оргстеклу (полиметилметакрилату) и поликарбонату. Однако по сравнению с оргстеклом (ударная прочность по Шарпи для оргстекла 13-15 кДж/м2) этот материал обладает очень высокой ударостойкостью (выше, чем у прозрачного ПВХ и сравнима с сплошным поликарбонатом), а также высокой прочностью на разрыв и на изгиб. Еще одним неоспоримым преимуществом перед другими материалами является то, что листовой ПЭТ относится к трудногорючим материалам, не поддерживающим горения в атмосфере воздуха. К тому же, по сравнению с другими листовыми материалами, ПЭТ (без УФ-защиты) является физиологически инертным, то есть обладает санитарно-экологическими преимуществами и, поэтому, может использоваться в медицинской и пищевой промышленности, в сфере торговли (общеизвестное применение ПЭТ – пластиковые бутылки для напитков), в производстве различного рода дисплеев, витрин и других изделий, где возможен контакт с человеком. По сфере применения листы ПЭТ могут быть хорошей заменой листовому прозрачному сплошному поликарбонату, в частности, в антивандальных сооружениях и конструкциях, тем более, что стоимость листового ПЭТ значительно ниже. К тому же, подобно поликарбонату, ПЭТ сохраняет свои высокие ударостойкие и прочностные характеристики при низких температурах - до –40°С.
Листы ПЭТ и ПЭТ-Г изготавливаются несколькими зарубежными производителями. Фирма «AXXIS®» (Бельгия) выпускает листы ПЭТ марки «AXPET» и листы ПЭТ-Г марки «VIVAK», которые обладают повышенной пластичностью в процессах термовакуумформования. Стандартный размер листов 2050х3050 мм. Фирма «BARLO PLASTICS» (Бельгия) производит листы ПЭТ-Г марки «BARLO®VECTAN» и листы ПЭТ-Г с УФ-защитой марки «BARLO® VECTAN UVP» (прозрачные и опал со светопропусканием 38%), имеющие 10-летнюю гарантию сохранения светотехнических, механических и других характеристик. Максимальные размеры листов – 1250х2050 мм для толщин 0.75 - 2 мм и 2050х3050 мм для толщин 3 - 10 мм. Фирма «SIMONA» (Германия) выпускает прозрачные листы «SIMOLUX PETG» на основе полиэтилентерефталата марки «Spectar» (фирма «Eastman»). Листы выпускаются следующих размеров – 2000х1000 мм для толщины 1 мм и 3000х1500 мм для толщин 2 - 6 мм. Новая марка листов ПЭТ – «AKRYLON VECTAN UVP» прозрачные (90%) и опал (35%) с УФ-защитой стандартных европейских размеров 2050х3050 мм с толщинами 0.75 - 10 мм.
К преимуществам всех эти материалов относятся: отсутствие предварительной сушки листов перед формованием (из-за очень малого водопоглощения), возможность термовакуумформования без потери высоких светопропускающих характеристик, высокая воспроизводимость сложных профилей с острыми кромками, краями, выступами и углами, низкая себестоимость формования благодаря короткому по времени технологическому циклу, отсутствие брака благодаря широкой температурной области формования. К тому же, в отличие от многих других листовых полимерных материалов изделия из ПЭТ могут находиться в контакте с пищевыми продуктами и могут подвергаться стерилизации.
Таблица 1.
Технические характеристики
листового ПЭТ и ПЭТ-Г.

характеристикаметодединицавеличина
плотностьd-1505г/см31.27
водопоглощение за 24 ч.din53495%<0.1
предел прочности при разрывеdin53455мпа50
удлинение при разрывеdin53455%55
предел прочности при изгибеdin53452мпа70
ударная вязкость (charpy) без надрезаdin53453кдж/м2без разрушения
ударная вязкость (charpy) с надрезомiso180кдж/м210
ударная вязкость (izod) с надрезомiso180дж/м115
коэфф. линейного расширенияdin53752к-1, 10-56.8
теплостойкость (vicat)din53460°c82
теплопроводностьdin52612вт/м·к0.20
удельная теплоемкостьd-2766дж/г·к1.1
макс. температура использования°с70
температура термоформования°с120 - 160
температура начала разложения°с>270
температура воспламенения°с>400
твердость (rockwell)d-785r105
светопропусканиеdin5036%88 - 90
электрическая прочностьd149кв/мм16
объемное сопротивлениеd257ом·см1015
поверхностное сопротивлениеd257ом1016


Листы ПЭТ имеют глянцевую поверхность с обеих сторон, ламинированных защитной полиэтиленовой пленкой. Поверхностный слой имеет высокую устойчивость к царапинам, на него прекрасно наносятся аппликативные самоклеящиеся пленки всех типов и хорошо ложится печать офсетным и трафаретным способами. Листы ПЭТ практически не отличаются от оргстекла, полистирола и поликарбоната в части механической обработки – прекрасно пилятся, режутся (в том числе лазером), сверлятся, фрезеруются, полируются, гнутся в холодном состоянии.
По сопротивляемости агрессивным средам ПЭТ обладает высокой химической стойкостью к кислотам, щелочам, солям, спиртам, парафинам, минеральным маслам. В то же время ПЭТ растворим в ацетоне, бензоле, толуоле, этилацетате, четыреххлористом углероде, хлороформе, метиленхлориде, метилэтилкетоне и, следовательно, листы ПЭТ могут так же хорошо склеиваться, как оргстекло, полистирол и поликарбонат.
Автор: Александр Гальченк